Quadratic Formula Calculator

Enter Values
\({ax}^{2} + {bx} + {c} = 0\)
a =
b =
c =

Result

\({\frac{1}{5}x}^{2}{-7.5x} +\frac{5}{7} = 0\)

The quadratic equation given has a solution below:

Solutions: 37.404518793809, 0.095481206191046


Calculation sequence

\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)

\(x = \frac{-(-7.5) \pm \sqrt{(-7.5)^2 - 4*\frac{1}{5}*\frac{5}{7}}}{2*\frac{1}{5}}\)

\(x = \frac{7.5 \pm \sqrt{|55.678571428571|}}{0.4}\)

\(x = \frac{7.5}{0.4} \pm \frac{\sqrt{55.678571428571}}{0.4}\)

\(x = {18.75} \pm {18.654518793809}\)

What is the Quadratic Formula?

The quadratic formula is a mathematical tool used to solve quadratic equations of the form:

ax2+bx+c=0ax^2 + bx + c = 0

The solution to this equation is given by:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Here:

  • aa, bb, and cc are coefficients of the quadratic equation,
  • b24acb^2 - 4ac is called the discriminant, determining the nature of the roots.

Nature of Roots Based on the Discriminant:

  1. Positive Discriminant (b24ac>0b^2 - 4ac > 0): Two distinct real roots.
  2. Zero Discriminant (b24ac=0b^2 - 4ac = 0): One real root (repeated root).
  3. Negative Discriminant (b24ac<0b^2 - 4ac < 0): Two complex roots.

Derivation of the Quadratic Formula

Step 0: Start form the quadratic formula, or from the general quadratic equation:

ax2+bx+c=0, where a0ax^2 + bx + c = 0 Step 1: Normalize the equation

Divide through by aa (assuming a0a \neq 0) to simplify the equation:

x2+bax+ca=0x^2 + \frac{b}{a}x + \frac{c}{a} = 0 Step 2: Move the constant term to the other side

Rearrange the equation so that the constant term is isolated:

x2+bax=cax^2 + \frac{b}{a}x = -\frac{c}{a} Step 3: Complete the square

To complete the square, add and subtract (b2a)2\left(\frac{b}{2a}\right)^2 on the left-hand side:

x2+bax+(b2a)2=(b2a)2cax^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a}

Simplify the left-hand side as a perfect square trinomial:

(x+b2a)2=b24a2ca\left(x + \frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a} Step 4: Combine terms on the right-hand side

The fractions on the right-hand side can be combined under a common denominator:

(x+b2a)2=b24ac4a2\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2} Step 5: Take the square root of both sides

Apply the square root to both sides, remembering to consider both the positive and negative roots:

x+b2a=±b24ac2ax + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a} Step 6: Solve for xx

Isolate xx by subtracting b2a\frac{b}{2a} from both sides:

x=b2a±b24ac2ax = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}

Combine the terms into a single fraction:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Example: Solve

2x24x6=02x^2 - 4x - 6 = 0

  1. a=2a = 2, b=4b = -4, c=6c = -6.
  2. Substitute into the formula: x=(4)±(4)24(2)(6)2(2)x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(2)(-6)}}{2(2)} x=4±16+484x = \frac{4 \pm \sqrt{16 + 48}}{4} x=4±644x = \frac{4 \pm \sqrt{64}}{4} x=4±84x = \frac{4 \pm 8}{4}
  3. Simplify: x1=4+84=3,x2=484=1x_1 = \frac{4 + 8}{4} = 3, \quad x_2 = \frac{4 - 8}{4} = -1

Sources:

Keedy, M. L., & Bittinger, M. L. (1982). Algebra and Trigonometry: A Functions Approach. Addison Wesley Publishing Company.



Cite as followed:
Zemtsov, I. "Quadratic Formula Calculator". Publicalculator.com, 10 December 2024. Published at: https://publicalculator.com/quadratic-formula-calculator. Accessed: Dec 26, 2024.